Testing hypotheses and theories is at the core of the process of science. Any aspect of the natural world could be explained in many different ways. It is the job of science to collect all those plausible explanations and to use scientific testing to filter through them, retaining ideas that are supported by the evidence and discarding the others. You can think of scientific testing as occurring in two logical steps: (1) if the idea is correct, what would we expect to see, and (2) does that expectation match what we actually observe? Ideas are supported when actual observations (i.e., results) match expected observations and are contradicted when they do not match. Note that scientists also reason out what they might observe if their hypothesis were NOT correct (or if a different hypothesis were correct) and compare those expectations to their observations. Scientists strive to evaluate their hypotheses from all angles, seeking out both supporting and refuting evidence.
TESTING IDEAS ABOUT CHILDBED FEVER
As a simple example of how scientific testing works, consider the case of Ignaz Semmelweis, who worked as a doctor on a maternity ward in the 1800s. In his ward, an unusually high percentage of new mothers died of what was then called childbed fever. Semmelweis considered many possible explanations for this high death rate. Two of the many ideas that he considered were (1) that the fever was caused by mothers giving birth lying on their backs (as opposed to on their sides) and (2) that the fever was caused by doctors’ unclean hands (the doctors often performed autopsies immediately before examining women in labor).
He tested these ideas by considering what expectations each idea generated. If it were true that childbed fever were caused by giving birth on one’s back, then changing procedures so that women labored on their sides should lead to lower rates of childbed fever. Semmelweis tried changing the position of labor, but the incidence of fever did not decrease; the actual observations did not match the expected results. If, however, childbed fever were caused by doctors’ unclean hands, having doctors wash their hands thoroughly with a strong disinfecting agent before attending to women in labor should lead to lower rates of childbed fever. When Semmelweis tried this, rates of fever plummeted; the actual observations matched the expected results, supporting the second explanation.
Testing in the tropics
Let’s take a look at another, very different, example of scientific testing: investigating the origins of coral atolls in the tropics. Consider the atoll Eniwetok (Anewetak) in the Marshall Islands — an oceanic ring of exposed coral surrounding a central lagoon. From the 1800s up until today, scientists have been trying to learn what supports atoll structures beneath the water’s surface and exactly how atolls form. Coral only grows near the surface of the ocean where light penetrates, so Eniwetok could have formed in several ways:
Hypothesis 1: Eniwetok might have originally grown around a volcanic island, which then sunk beneath the surface of the water as the reef continued to grow to the surface. Underwater volcanic activity (i.e., hotspots) can produce an island in the middle of the ocean, as cooled lava builds up around the hotspot. However, tectonic plate movement eventually carries the island off the hotspot, keeping the island from being built up further. Meanwhile, coral organisms grow in a ring in the shallow waters surrounding the exposed volcanic island. As time passes, erosion and tectonic action cause the island to sink slowly (or subside), and as it does, it takes the coral ring with it. However, coral are living organisms and grow their colonies upwards as their substrate sinks. Over time, the island could sink deep below the surface of the water, while the coral continue to thrive, constantly growing towards the surface in their original ring configuration.
Hypothesis 2: The coral that makes up Eniwetok might have grown in a ring atop an underwater mountain already near the surface. The key to this hypothesis is the idea that underwater mountains don’t sink; instead the remains of dead sea animals (shells, etc.) accumulate on underwater mountains, potentially assisted by tectonic uplifting. Eventually, the top of the mountain/debris pile would reach the depth at which coral grow, and the atoll would form.
Which is a better explanation for Eniwetok? Did the atoll grow atop a sinking volcano, forming an underwater coral tower, or was the mountain instead built up until it neared the surface where coral were eventually able to grow? Which of these explanations is best supported by the evidence? We can’t perform an experiment to find out. Instead, we must figure out what expectations each hypothesis generates, and then collect data from the world to see whether our observations are a better match with one of the two ideas.
If Eniwetok grew atop an underwater mountain, then we would expect the atoll to be made up of a relatively thin layer of coral on top of limestone or basalt. But if it grew upwards around a subsiding island, then we would expect the atoll to be made up of many hundreds of feet of coral on top of volcanic rock. When geologists drilled into Eniwetok in 1951 as part of a survey preparing for nuclear weapons tests, the drill bored through more than 4000 feet (1219 meters) of coral before hitting volcanic basalt! The actual observation contradicted the underwater mountain explanation and matched the subsiding island explanation, supporting that idea. Of course, many other lines of evidence also shed light on the origins of coral atolls, but the surprising depth of coral on Eniwetok was particularly convincing to many geologists.
Take a sidetrip
Visit the NOAA website to see an animation of coral atoll formation according to Hypothesis 1.
Scientists test hypotheses and theories. They are both scientific explanations for what we observe in the natural world, but theories deal with a much wider range of phenomena than do hypotheses. To learn more about the differences between hypotheses and theories, jump ahead to Science at multiple levels.